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Abstract  —  In this paper, we propose a robust algorithm 
for automating the neural network based RF/Microwave 
model development process. The algorithm can build a neural 
model starting with zero amount of training/test data, and 
then proceeding with neural network training in a stage-wise 
manner. In each stage, the algorithm utilizes neural network 
error criteria to determine additional training/test samples 
required and their location in model input space. The 
algorithm dynamically generates these new data samples 
during training, by automatic driving of simulation tools, e.g., 
OSA90, Ansoft-HFSS. Initially, fewer hidden neurons are 
used, and the algorithm adjusts the neural network size 
whenever it detects under-learning. Our technique integrates 
all the sub-tasks involved in neural modeling, thereby 
facilitating a more efficient and automated model building 
process. It significantly reduces the intensive human effort 
demanded by the conventional step-by-step neural modeling 
approach. The algorithm is demonstrated through MESFET 
and Embedded Capacitor examples. 

I. INTRODUCTION 

Recently, a neural network based CAD approach 
has been introduced for microwave modeling and 
design [1]. Neural models are developed from 
microwave data through a process called training. 
These models are used during microwave design to 
provide fast estimation of device/circuit behaviors 
[2][3]. Neural modeling techniques have been applied 
to a wide variety of microwave problems, e.g., 
transistors [2], transmission lines [3], vias [4], CPW 
components [5], filters [6], amplifiers [7]. Significant 
speed-up of CAD by using neural models in place of 
CPU-intensive EM/physics models resulted in a drive 
to develop advanced neural modeling techniques. 

Neural model development involves data 
generation, preprocessing, training, and testing. 
Conventionally, these sub-tasks are carried out 
separately in a sequential manner. Such an approach 
could demand intensive human effort, e.g., exhaustive 
data generation using commercial simulators, 
repetitive training’s with different neural network 
sizes until desired model accuracy is achieved etc. 
Since human decisions are involved in the 
conventional approach, a reasonable understanding of 
issues like “How much data?”, “How many 

neurons?”, is also necessary. As such, automation of 
neural modeling process could be of immense 
interest, because it transfers human workload to the 
CPU. 

In this paper, we propose a novel algorithm that 
automatically drives all the sub-tasks involved in 
neural modeling process in a unified way. Entire model 
development process right from data generation to neural 
model testing is integrated and computerized. The 
algorithm facilitates periodic communication between 
various sub-tasks, thus enabling adjustment or 
enhancement in the execution of a sub-task based on 
the feedback from other sub-tasks. Neural model 
development process can start with zero amount of 
training/test data samples and with a small neural network. 
As the stage-by-stage training continues, the algorithm can 
(i) Determine the number of additional training/test 
samples required and their distribution in model input 
parameter space based on neural network test error, (ii) 
Adjust neural network size (i.e., add more hidden layer 
neurons) based on neural network training error. 

The algorithm has built-in simulation drivers (e.g., OSA 
driver, Ansoft-HFSS driver) for automatic driving of 3D-
EM or physics-based simulation tools during neural 
network training. From the user’s perspective, the 
technique establishes a quantitative link between neural 
model accuracy, the number and distribution of 
training/test data, and the neural network size. The 
algorithm identifies nonlinear sub-regions in the model 
input space (if any) and adds relatively more samples in 
such regions, while fewer samples are generated in smooth 
regions, thus making judicious use of data. 

II. PROPOSED AUTOMATION ALGORITHM  

A. Methodology 

Let x and y represent n- and m-dimensional input and 
output vectors of a microwave problem respectively, and 
y(x) and ),(~ wxy  represent physics/EM and neural 
network relationships between x and y, where w denotes 
the neural network weight vector. Let Lk and Tk represent 
training and test data sets during kth training stage. To 
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begin with, the algorithm considers the original bounded 
n-dimensional input space of interest (R0) as a group of 2n 
regions (hyper-cubes) R1, R2,…, nR

2
, of equal-volume. 

Initial training and test data are systematically generated 
for each region in a pre-defined way (e.g., central 
composite distribution), and an initial neural network with 
relatively fewer hidden layer neurons is used. After kth 
training stage, if the neural model accuracy does not match 
the user-desired accuracy, the worst test sample with 
maximum error is identified by, 
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The worst region ∗
kR  to which *xk  belongs is further 

divided (split) into 2n new regions. Lk and Tk are updated 
by generating incremental training data (p new samples) 
and test data (q new samples) in these new regions as, 
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where, xmax and xmin are the extreme boundaries of R0, r is 
the number of splits after which ∗

kR  was formed, and Pi 
and Qj are n x n diagonal matrices. Each diagonal element 
of these matrices could take one of the values 0, +1, or –1, 
depending upon the pre-defined sample distribution in 
each hypercube. In the next stage, the algorithm trains the 
neural network with Lk+1 and tests the neural model using 
Tk+1. The algorithm also monitors training error and its 
gradient to detect possible situations of under-learning of 
the neural network. As a remedy to under-learning, 
additional hidden layer neurons are added to the neural 
network. The process is continued until user-desired model 
accuracy is achieved. A flow-chart of the proposed 
automatic neural modeling algorithm illustrating the kth 
stage of neural model development is shown in Fig. 1. 

B. Implementation 

Let ℜ  represent a set of regions and Ed represent user-
desired neural model accuracy (average test error). Let 
El(k), Et(k), ∆El(k) represent training error, test error, and 
gradient of the training error, for the neural network 
structure Sk at the end of kth stage of training, and kmax 
represent the maximum number of stages set by the user. 
Nk denotes the number of hidden layer neurons in Sk. In 
addition, there are user-inputs kc, ku, ∆E, and α. The 
pseudocode of the proposed algorithm is presented below. 

Initialization: k = 1, N1 = N0, L1 = { xi | xi is a vertex of 
R0} and T1 = { xj | xj is the center of R0}. Generate yi and yj 

for all xi and xj. There is only one region, R0 ∈  ℜ . Train 
initial neural network S1 using the samples (xi, yi), xi ∈  L1, 
and test the neural model with (xj, yj), xj ∈  T1. Activate 
Data Generation (R0).  

Activate Data Generation (R): Split the region R into 
2n new regions of equal volume. Delete the region R from 
ℜ  and add the new regions to ℜ . Generate training and test 
data for new regions by automatically driving the 
simulator. Update Lk and Tk to include the new samples 
and go to Automatic Training. 

Automatic Training: k = k+1. Train neural network 
structure Sk using data samples in Lk. Test the neural 
model with samples in Lk to obtain training error El(k), and 
with samples in Tk to obtain test error Et(k). 

if (k > kmax) or ((Et(k) ≤ Ed) for kc consecutive 
training stages), Stop Training 
else if (Et(k) > αEd) and ((∆El(k) < ∆E) for ku 
consecutive training stages) then under-learning is 
detected. Add Hidden Neurons, i.e., Nk = Nk + δ, where 
δ is number of newly added hidden neurons in Sk. 
else Choose Worst-Performing Region ∗

kR  following 
eq. (1). Activate Data Generation ( ∗

kR ). 

III. EXAMPLES 

The proposed algorithm is implemented and 
incorporated into our NeuroModeler software [8]. 

A. Automatic Generation of MESFET Neural Model 

In this example, neural model of a MESFET is 
developed. The input space x contains gate-length (l), 
channel thickness (a), gate-source voltage (vg), and drain-
source voltage (vd). Drain current (id) is the neural network 
output y. The complexity of the input-output relationship is 
not known a priori and so is the number of hidden layer 
neurons required. For a given Ed, the number of 
training/test samples needed and their distribution in (l, a, 
vg, vd) space are also not known. 

The automatic algorithm starts with an initial model 
structure (3-layer MLP with 9 hidden neurons) and with 
zero training and test data. In the first stage, the algorithm 
generates 16 samples to train the neural network and 1 
sample to test it. During subsequent training stages, 
incremental training/test data and additional hidden 
neurons are automatically added as needed. The online 
data generation during the model building process is 
achieved by our Osa90 driver, which automatically drives 
the OSA90 simulator [9]. For Ed = 1%, the algorithm 
produces a neural model with 0.82% accuracy after 5 
training stages. A total of 275 training samples and 61 test 
samples are used and the final neural model has 16 hidden 
neurons. Using the manual step-by-step neural modeling 
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approach, a MLP neural network with 16 hidden neurons, 
trained using 275 uniform-grid samples yielded a neural 
model with 1.5% test error. The neural model obtained by 
our algorithm is further tested with a large set of test data 
(80000 samples) never seen during training. The average 
test error is observed to be 0.90%, thus verifying the 
reliability of our algorithm. The automatic data generation 
algorithm tends to give more accurate neural models with 
same amount of training data, as compared to the 
conventional uniform-grid approach as shown in Table I. 
This is because the proposed method uses efficient 
distribution, i.e., more (less) data are generated in 
nonlinear (smooth) regions.  

B. Automatic Generation of Embedded Square Capacitor 
Neural Model 

Accurate modeling of 3-D EM behaviors of embedded 
components used in high-speed high-frequency multi-layer 
printed circuit boards (PCB) is necessary for efficient 
CAD. In this example, neural model of an embedded 
square capacitor shown in Fig. 2 is developed. The input 
space x contains length/width (l), thickness (t), dielectric 
constant of the capacitor (εr), and frequency (f), f ∈  (0.1 – 
20GHz). Real and imaginary parts of S11 are the model 
outputs y. In the first stage, the neural network S1 has 12 
hidden neurons, and 16 training samples and 1 test sample 
are used. Whenever, the automatic algorithm needs more 
data, it dynamically drives the ANSOFT-HFSS simulator 
[10] using our Ansoft-Hfss driver. After 10 stages of 
training, the final neural model S10 with 20 hidden 
neurons, 554 training, and 136 test samples achieved an 
accuracy of 0.92%. On the other hand, a MLP neural 
network with 20 hidden neurons trained with 554 uniform 
grid samples has a test error of 6.8%. A comparison of 
training data shows that the automatic algorithm uses 176 
training samples in the sub-region f ∈  (0.1 – 3GHz) where 
data is relatively difficult to learn, while the manual 
uniform-grid sampling uses only 128 data points. Using 
uniform-grid and manual training approach, 768 training 
samples are required to achieve a model accuracy of 1%. 
Neural model generated by our algorithm is subjected to 
an independent test with a large set of data (8200 samples) 
never seen during training and the test error is observed to 
be 1.04%, confirming the reliability of our model. 

A time comparison between the proposed algorithm and 
the step-by-step manual neural modeling approach is 
shown in Table II. It can be seen that the human time 
required in the case of the proposed algorithm is very 
small as compared to the manual approach. The reason is 
that, in the manual approach, whenever an input parameter 
(e.g., length) changes, one must manually re-draw 
capacitor, run HFSS, and update the data files. In our 

algorithm, data generation is automatic. The CPU time 
required by our approach is also relatively smaller. This is 
because the manual approach requires more data and 
neural networks of different sizes are to be trained before a 
neural model with desired accuracy is achieved. 

IV. CONCLUSION 

We proposed a robust algorithm for automatic 
development of neural network based RF/Microwave 
models. The algorithm can build neural models starting 
with small amounts of training/test data and then 
proceeding with stage-by-stage training. The algorithm 
generates new data samples during training, by automatic 
driving of simulation tools. Neural network size can also 
be adjusted during training. The technique provides a 
quantitative link between the neural model accuracy, the 
number and distribution of training data, and the neural 
network size. It can be seen from the examples that the 
proposed algorithm uses relatively fewer samples than the 
manual approach to achieve similar model accuracy. A 
significant reduction in the human time and effort is 
demonstrated in the capacitor example. 

REFERENCES 

[1] Q.J. Zhang and K.C. Gupta, Neural Networks for RF and 
Microwave Design, Artech House, Norwood, MA, 2000. 

[2] F. Wang and Q.J. Zhang, “Knowledge-based neural models 
for microwave design”, IEEE Trans. Microwave Theory 
Tech., vol. 45, pp. 2333-2343, 1997. 

[3] F. Wang, V.K. Devabhaktuni, and Q.J. Zhang, “A 
hierarchical neural network approach to the development of 
a library of neural models for microwave design”, IEEE 
Trans. Microwave Theory Tech., vol. 46, pp. 2391-2403, 
1998. 

[4] P.M. Watson, K.C. Gupta, and R.L. Mahajan, “Applications 
of knowledge-based artificial neural network modeling to 
microwave components”, Int J. RF and Microwave CAE, 
vol. 9, pp. 254-260, 1999. 

[5] P. Watson, G. Creech, and K. Gupta, “Knowledge based 
EM-ANN models for the design of wide bandwidth CPW 
patch/slot antennas,” 1999 IEEE APS-S Int. Symp. Dig., 
Orlando, FL, 1999, pp. 2588-2591. 

[6] J.W. Bandler, M.A. Ismail, J.E. Rayas-Sanchez, and Q.J. 
Zhang, “Neuromodeling of microwave circuits exploiting 
space-mapping technology”, IEEE Trans. Microwave 
Theory Tech., vol. 47, pp. 2417-2427, 1999. 

[7] M. Vai and S. Prasad, “Neural networks in microwave 
circuit design - Beyond black box models,” Int J. RF and 
Microwave CAE, vol. 9, pp. 187-197, 1999. 

[8] NeuroModeler v. 1.3, Q.J. Zhang, Dept of Electronics, 
Carleton University, Ottawa, Canada. 

[9] OSA90, Optimization Systems Associates, Dundas, Canada, 
Now HP EEsof, Santa Rosa, CA, USA.  

[10] Ansoft HFSS v.7.0.11, Ansoft Corporation, Pittsburgh, PA, 
USA. 

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Flow-chart of the proposed automatic neural modeling algorithm showing the kth stage of model development. 
 
TABLE I. MODEL ACCURACY COMPARISON BETWEEN THE PROPOSED AUTOMATIC MODEL BUILDING ALGORITHM AND THE 

MANUAL APPROACH BASED ON CONVENTIONAL GRID DISTRIBUTION FOR THE MESFET EXAMPLE.  MODEL ACCURACY 
REPORTED IN THE TABLE IS BASED ON THE TEST RESULTS USING AN INDEPENDENT SET OF 80000 SAMPLES. 

 
 Proposed Automatic Algorithm Manual Neural Modeling Approach  

Stage No. (k) No. of Training Samples Model Accuracy  No. of Training Samples Used Model Accuracy 
1 16 23.38% 16 25.74% 
2 81 6.64% 81 8.05% 
3 146 4.32% 144 6.42% 
4 211 1.82% 225 3.20% 
5 256 0.90% 256 1.28% 
6 318 0.48% 320 0.75% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Embedded capacitor used in multi-layer PCB’s. S-
parameter neural model of the capacitor is developed from 
3D-EM data of ANSOFT-HFSS using the proposed algorithm.  

 
TABLE II. COMPARISON OF  THE TIME TAKEN BY 

PROPOSED ALGORITHM AND MANUAL STEP-BY-STEP 
NEURAL MODELING FOR THE EMBEDDED CAPACITOR. 

 
 

Proposed Automatic 
Model Development 

Algorithm 

Manual Step-By-Step 
Neural Modeling 

Approach 

 

Human 
Time 

CPU Time Human 
Time 

CPU Time 

 5 min 1158 min 498 min 1625 min 

Total 
Time    

1163 min 2123 min 

 

Neural Model Based 
Circuit Simulation and 

Optimization, e.g., using 
Agilent ADS 

Neural Model

No 

Yes 

Desired 
Accuracy 
Achieved? 

Under 
Learning 
Detected? 

Yes 

No 

Data Generator 
(e.g., Ansoft HFSS) 

Our Driver for 
Data Generator 

Training Data
Lk-1 

+ New 
Training Data 

Training Data
Lk 

Test Data 
Tk-1 

+ New 
Test Data 

Test Data 
Tk 

Neural Network 
Training 

Neural Model 
Testing 

Determine Number of Extra Samples 
Required and Their Distribution in Model 

Input Parameter space 

Adjust size of Sk by 
Adding More Hidden 

Layer Neurons 

εεεεr capacitor 

 l 
 t 
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