

A Robust Algorithm for Automatic Development of Neural
Network Models for Microwave Applications

Vijay Devabhaktuni, Mustapha C.E. Yagoub, and Qi-Jun Zhang

Department of Electronics, Carleton University, Ottawa, Ontario, K1S 5B6, Canada

Abstract — In this paper, we propose a robust algorithm
for automating the neural network based RF/Microwave
model development process. The algorithm can build a neural
model starting with zero amount of training/test data, and
then proceeding with neural network training in a stage-wise
manner. In each stage, the algorithm utilizes neural network
error criteria to determine additional training/test samples
required and their location in model input space. The
algorithm dynamically generates these new data samples
during training, by automatic driving of simulation tools, e.g.,
OSA90, Ansoft-HFSS. Initially, fewer hidden neurons are
used, and the algorithm adjusts the neural network size
whenever it detects under-learning. Our technique integrates
all the sub-tasks involved in neural modeling, thereby
facilitating a more efficient and automated model building
process. It significantly reduces the intensive human effort
demanded by the conventional step-by-step neural modeling
approach. The algorithm is demonstrated through MESFET
and Embedded Capacitor examples.

I. INTRODUCTION

Recently, a neural network based CAD approach
has been introduced for microwave modeling and
design [1]. Neural models are developed from
microwave data through a process called training.
These models are used during microwave design to
provide fast estimation of device/circuit behaviors
[2][3]. Neural modeling techniques have been applied
to a wide variety of microwave problems, e.g.,
transistors [2], transmission lines [3], vias [4], CPW
components [5], filters [6], amplifiers [7]. Significant
speed-up of CAD by using neural models in place of
CPU-intensive EM/physics models resulted in a drive
to develop advanced neural modeling techniques.

Neural model development involves data
generation, preprocessing, training, and testing.
Conventionally, these sub-tasks are carried out
separately in a sequential manner. Such an approach
could demand intensive human effort, e.g., exhaustive
data generation using commercial simulators,
repetitive training’s with different neural network
sizes until desired model accuracy is achieved etc.
Since human decisions are involved in the
conventional approach, a reasonable understanding of
issues like “How much data?”, “How many

neurons?”, is also necessary. As such, automation of
neural modeling process could be of immense
interest, because it transfers human workload to the
CPU.

In this paper, we propose a novel algorithm that
automatically drives all the sub-tasks involved in
neural modeling process in a unified way. Entire model
development process right from data generation to neural
model testing is integrated and computerized. The
algorithm facilitates periodic communication between
various sub-tasks, thus enabling adjustment or
enhancement in the execution of a sub-task based on
the feedback from other sub-tasks. Neural model
development process can start with zero amount of
training/test data samples and with a small neural network.
As the stage-by-stage training continues, the algorithm can
(i) Determine the number of additional training/test
samples required and their distribution in model input
parameter space based on neural network test error, (ii)
Adjust neural network size (i.e., add more hidden layer
neurons) based on neural network training error.

The algorithm has built-in simulation drivers (e.g., OSA
driver, Ansoft-HFSS driver) for automatic driving of 3D-
EM or physics-based simulation tools during neural
network training. From the user’s perspective, the
technique establishes a quantitative link between neural
model accuracy, the number and distribution of
training/test data, and the neural network size. The
algorithm identifies nonlinear sub-regions in the model
input space (if any) and adds relatively more samples in
such regions, while fewer samples are generated in smooth
regions, thus making judicious use of data.

II. PROPOSED AUTOMATION ALGORITHM

A. Methodology

Let x and y represent n- and m-dimensional input and
output vectors of a microwave problem respectively, and
y(x) and),(~ wxy represent physics/EM and neural
network relationships between x and y, where w denotes
the neural network weight vector. Let Lk and Tk represent
training and test data sets during kth training stage. To

0-7803-6540-2/01/$10.00 (C) 2001 IEEE

begin with, the algorithm considers the original bounded
n-dimensional input space of interest (R0) as a group of 2n
regions (hyper-cubes) R1, R2,…, nR

2
, of equal-volume.

Initial training and test data are systematically generated
for each region in a pre-defined way (e.g., central
composite distribution), and an initial neural network with
relatively fewer hidden layer neurons is used. After kth
training stage, if the neural model accuracy does not match
the user-desired accuracy, the worst test sample with
maximum error is identified by,

)(),(~maxarg xywxyx
x

* −=
∈

k
T

k
k

. (1)

The worst region ∗
kR to which *xk belongs is further

divided (split) into 2n new regions. Lk and Tk are updated
by generating incremental training data (p new samples)
and test data (q new samples) in these new regions as,

�
�
�
�

�
�
� =

−
+=

++ piLL
rikkk ,...,2,1,

2 1
minmax

1
xx

Px* , (2)

�
�
�
�

�
�
� =

−
+=

++ qjTT
rjkkk ,...,2,1,

2 2
minmax

1
xx

Qx* , (3)

where, xmax and xmin are the extreme boundaries of R0, r is
the number of splits after which ∗

kR was formed, and Pi
and Qj are n x n diagonal matrices. Each diagonal element
of these matrices could take one of the values 0, +1, or –1,
depending upon the pre-defined sample distribution in
each hypercube. In the next stage, the algorithm trains the
neural network with Lk+1 and tests the neural model using
Tk+1. The algorithm also monitors training error and its
gradient to detect possible situations of under-learning of
the neural network. As a remedy to under-learning,
additional hidden layer neurons are added to the neural
network. The process is continued until user-desired model
accuracy is achieved. A flow-chart of the proposed
automatic neural modeling algorithm illustrating the kth
stage of neural model development is shown in Fig. 1.

B. Implementation

Let ℜ represent a set of regions and Ed represent user-
desired neural model accuracy (average test error). Let
El(k), Et(k), ∆El(k) represent training error, test error, and
gradient of the training error, for the neural network
structure Sk at the end of kth stage of training, and kmax
represent the maximum number of stages set by the user.
Nk denotes the number of hidden layer neurons in Sk. In
addition, there are user-inputs kc, ku, ∆E, and α. The
pseudocode of the proposed algorithm is presented below.

Initialization: k = 1, N1 = N0, L1 = { xi | xi is a vertex of
R0} and T1 = { xj | xj is the center of R0}. Generate yi and yj

for all xi and xj. There is only one region, R0 ∈ ℜ . Train
initial neural network S1 using the samples (xi, yi), xi ∈ L1,
and test the neural model with (xj, yj), xj ∈ T1. Activate
Data Generation (R0).

Activate Data Generation (R): Split the region R into
2n new regions of equal volume. Delete the region R from
ℜ and add the new regions to ℜ . Generate training and test
data for new regions by automatically driving the
simulator. Update Lk and Tk to include the new samples
and go to Automatic Training.

Automatic Training: k = k+1. Train neural network
structure Sk using data samples in Lk. Test the neural
model with samples in Lk to obtain training error El(k), and
with samples in Tk to obtain test error Et(k).

if (k > kmax) or ((Et(k) ≤ Ed) for kc consecutive
training stages), Stop Training
else if (Et(k) > αEd) and ((∆El(k) < ∆E) for ku
consecutive training stages) then under-learning is
detected. Add Hidden Neurons, i.e., Nk = Nk + δ, where
δ is number of newly added hidden neurons in Sk.
else Choose Worst-Performing Region ∗

kR following
eq. (1). Activate Data Generation (∗

kR).

III. EXAMPLES

The proposed algorithm is implemented and
incorporated into our NeuroModeler software [8].

A. Automatic Generation of MESFET Neural Model

In this example, neural model of a MESFET is
developed. The input space x contains gate-length (l),
channel thickness (a), gate-source voltage (vg), and drain-
source voltage (vd). Drain current (id) is the neural network
output y. The complexity of the input-output relationship is
not known a priori and so is the number of hidden layer
neurons required. For a given Ed, the number of
training/test samples needed and their distribution in (l, a,
vg, vd) space are also not known.

The automatic algorithm starts with an initial model
structure (3-layer MLP with 9 hidden neurons) and with
zero training and test data. In the first stage, the algorithm
generates 16 samples to train the neural network and 1
sample to test it. During subsequent training stages,
incremental training/test data and additional hidden
neurons are automatically added as needed. The online
data generation during the model building process is
achieved by our Osa90 driver, which automatically drives
the OSA90 simulator [9]. For Ed = 1%, the algorithm
produces a neural model with 0.82% accuracy after 5
training stages. A total of 275 training samples and 61 test
samples are used and the final neural model has 16 hidden
neurons. Using the manual step-by-step neural modeling

0-7803-6540-2/01/$10.00 (C) 2001 IEEE

approach, a MLP neural network with 16 hidden neurons,
trained using 275 uniform-grid samples yielded a neural
model with 1.5% test error. The neural model obtained by
our algorithm is further tested with a large set of test data
(80000 samples) never seen during training. The average
test error is observed to be 0.90%, thus verifying the
reliability of our algorithm. The automatic data generation
algorithm tends to give more accurate neural models with
same amount of training data, as compared to the
conventional uniform-grid approach as shown in Table I.
This is because the proposed method uses efficient
distribution, i.e., more (less) data are generated in
nonlinear (smooth) regions.

B. Automatic Generation of Embedded Square Capacitor
Neural Model

Accurate modeling of 3-D EM behaviors of embedded
components used in high-speed high-frequency multi-layer
printed circuit boards (PCB) is necessary for efficient
CAD. In this example, neural model of an embedded
square capacitor shown in Fig. 2 is developed. The input
space x contains length/width (l), thickness (t), dielectric
constant of the capacitor (εr), and frequency (f), f ∈ (0.1 –
20GHz). Real and imaginary parts of S11 are the model
outputs y. In the first stage, the neural network S1 has 12
hidden neurons, and 16 training samples and 1 test sample
are used. Whenever, the automatic algorithm needs more
data, it dynamically drives the ANSOFT-HFSS simulator
[10] using our Ansoft-Hfss driver. After 10 stages of
training, the final neural model S10 with 20 hidden
neurons, 554 training, and 136 test samples achieved an
accuracy of 0.92%. On the other hand, a MLP neural
network with 20 hidden neurons trained with 554 uniform
grid samples has a test error of 6.8%. A comparison of
training data shows that the automatic algorithm uses 176
training samples in the sub-region f ∈ (0.1 – 3GHz) where
data is relatively difficult to learn, while the manual
uniform-grid sampling uses only 128 data points. Using
uniform-grid and manual training approach, 768 training
samples are required to achieve a model accuracy of 1%.
Neural model generated by our algorithm is subjected to
an independent test with a large set of data (8200 samples)
never seen during training and the test error is observed to
be 1.04%, confirming the reliability of our model.

A time comparison between the proposed algorithm and
the step-by-step manual neural modeling approach is
shown in Table II. It can be seen that the human time
required in the case of the proposed algorithm is very
small as compared to the manual approach. The reason is
that, in the manual approach, whenever an input parameter
(e.g., length) changes, one must manually re-draw
capacitor, run HFSS, and update the data files. In our

algorithm, data generation is automatic. The CPU time
required by our approach is also relatively smaller. This is
because the manual approach requires more data and
neural networks of different sizes are to be trained before a
neural model with desired accuracy is achieved.

IV. CONCLUSION

We proposed a robust algorithm for automatic
development of neural network based RF/Microwave
models. The algorithm can build neural models starting
with small amounts of training/test data and then
proceeding with stage-by-stage training. The algorithm
generates new data samples during training, by automatic
driving of simulation tools. Neural network size can also
be adjusted during training. The technique provides a
quantitative link between the neural model accuracy, the
number and distribution of training data, and the neural
network size. It can be seen from the examples that the
proposed algorithm uses relatively fewer samples than the
manual approach to achieve similar model accuracy. A
significant reduction in the human time and effort is
demonstrated in the capacitor example.

REFERENCES

[1] Q.J. Zhang and K.C. Gupta, Neural Networks for RF and
Microwave Design, Artech House, Norwood, MA, 2000.

[2] F. Wang and Q.J. Zhang, “Knowledge-based neural models
for microwave design”, IEEE Trans. Microwave Theory
Tech., vol. 45, pp. 2333-2343, 1997.

[3] F. Wang, V.K. Devabhaktuni, and Q.J. Zhang, “A
hierarchical neural network approach to the development of
a library of neural models for microwave design”, IEEE
Trans. Microwave Theory Tech., vol. 46, pp. 2391-2403,
1998.

[4] P.M. Watson, K.C. Gupta, and R.L. Mahajan, “Applications
of knowledge-based artificial neural network modeling to
microwave components”, Int J. RF and Microwave CAE,
vol. 9, pp. 254-260, 1999.

[5] P. Watson, G. Creech, and K. Gupta, “Knowledge based
EM-ANN models for the design of wide bandwidth CPW
patch/slot antennas,” 1999 IEEE APS-S Int. Symp. Dig.,
Orlando, FL, 1999, pp. 2588-2591.

[6] J.W. Bandler, M.A. Ismail, J.E. Rayas-Sanchez, and Q.J.
Zhang, “Neuromodeling of microwave circuits exploiting
space-mapping technology”, IEEE Trans. Microwave
Theory Tech., vol. 47, pp. 2417-2427, 1999.

[7] M. Vai and S. Prasad, “Neural networks in microwave
circuit design - Beyond black box models,” Int J. RF and
Microwave CAE, vol. 9, pp. 187-197, 1999.

[8] NeuroModeler v. 1.3, Q.J. Zhang, Dept of Electronics,
Carleton University, Ottawa, Canada.

[9] OSA90, Optimization Systems Associates, Dundas, Canada,
Now HP EEsof, Santa Rosa, CA, USA.

[10] Ansoft HFSS v.7.0.11, Ansoft Corporation, Pittsburgh, PA,
USA.

0-7803-6540-2/01/$10.00 (C) 2001 IEEE

Fig. 1. Flow-chart of the proposed automatic neural modeling algorithm showing the kth stage of model development.

TABLE I. MODEL ACCURACY COMPARISON BETWEEN THE PROPOSED AUTOMATIC MODEL BUILDING ALGORITHM AND THE

MANUAL APPROACH BASED ON CONVENTIONAL GRID DISTRIBUTION FOR THE MESFET EXAMPLE. MODEL ACCURACY
REPORTED IN THE TABLE IS BASED ON THE TEST RESULTS USING AN INDEPENDENT SET OF 80000 SAMPLES.

 Proposed Automatic Algorithm Manual Neural Modeling Approach

Stage No. (k) No. of Training Samples Model Accuracy No. of Training Samples Used Model Accuracy
1 16 23.38% 16 25.74%
2 81 6.64% 81 8.05%
3 146 4.32% 144 6.42%
4 211 1.82% 225 3.20%
5 256 0.90% 256 1.28%
6 318 0.48% 320 0.75%

Fig. 2. Embedded capacitor used in multi-layer PCB’s. S-
parameter neural model of the capacitor is developed from
3D-EM data of ANSOFT-HFSS using the proposed algorithm.

TABLE II. COMPARISON OF THE TIME TAKEN BY

PROPOSED ALGORITHM AND MANUAL STEP-BY-STEP
NEURAL MODELING FOR THE EMBEDDED CAPACITOR.

Proposed Automatic
Model Development

Algorithm

Manual Step-By-Step
Neural Modeling

Approach

Human
Time

CPU Time Human
Time

CPU Time

 5 min 1158 min 498 min 1625 min

Total
Time

1163 min 2123 min

Neural Model Based
Circuit Simulation and

Optimization, e.g., using
Agilent ADS

Neural Model

No

Yes

Desired
Accuracy
Achieved?

Under
Learning
Detected?

Yes

No

Data Generator
(e.g., Ansoft HFSS)

Our Driver for
Data Generator

Training Data
Lk-1

+ New
Training Data

Training Data
Lk

Test Data
Tk-1

+ New
Test Data

Test Data
Tk

Neural Network
Training

Neural Model
Testing

Determine Number of Extra Samples
Required and Their Distribution in Model

Input Parameter space

Adjust size of Sk by
Adding More Hidden

Layer Neurons

εεεεr capacitor

 l
 t

0-7803-6540-2/01/$10.00 (C) 2001 IEEE

	A Robust Algorithm for Automatic Development of Neural Network Models for Microwave Applications
	
	
	
	Department of Electronics, Carleton University, Ottawa, Ontario, K1S 5B6, Canada

	A
	Abstract — In this paper, we propose a robust algorithm for automating the neural network based RF/Microwave model development process. The algorithm can build a neural model starting with zero amount of training/test data, and then proceeding with neu
	I. Introduction
	II. Proposed Automation Algorithm
	III. Examples
	
	
	
	
	A. Automatic Generation of MESFET Neural Model

	References

	IMS 2001
	Return to Main Menu

